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NUMERICAL ANALYSIS OF FLOW TtlROUGlt OSCILLATING CASCADE SECTIONS

Dennis L. Huff

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

A compressible, Euler or full Navier-Stokes, finite

difference code has been developed for modeling
inviscid and viscous flow through oscillating cascades.

The code uses a deforming grid technique to capture

the motion of the airfoils and can model oscillating
cascades with both zero and non-zero inter-blade

phase angles. Two-dimensional, unsteady character-

istic boundary conditions are applied at the inlet for
viscous solutions and to both the inlet and exit for

inviseid solutions to minimize rcflections from these

regions.

Results are presented for two cascade geometries

for comparisons with experimental data and a flat

plate cascade for comparisons with small-

perturbation theory. Overall, there is good agree-

ment for the two non-zero inter-blade phasc angle

cases presented and poor agreement for the zero

inter-blade phase angle cases. Studies on rcflccting

versus non-reflecting inlet and cxit boundary condi-

tions show that the treatment of the boundary can

have a significant effect on the first harmonic,

unsteady pressure distributions for the cases with

zero inter-blade phase angles. Using first or second-

order temporal accuracy in the numerical algorithm

did not make a significant difference in thc unsteady

pressure distributions for the present solutions.
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The design of turbomachinery blades requires the

prevention of flutter for all operating conditions.

However, flow field predictions used for aeroelastic

analysis are not well developed for all flow regimes.

Many methods used for flutter analysis depend on the

successful predictions of blade loading and blade

motion. Ideally, this is an interactive process where a

structural analysis determines the blade motion from

the blade loading and the loading is determine by the

flow analysis from the blade motion. Unfortunately,

the flow analysis technology lags the structural analy-

sis technology in that accurate predictions of the flow

field for transonic flow through oscillating cascades

are not readily available. Many of the cxisting flow

analysis methods are numerical and require large

amounts of computer time. However, advances in

computer technology have given thc aerodynamicist

hope for numerical methods being used as a tool in

the design process.

In theory, the solution of the Navier-Stokes
cquations should model all flow phenomena asso-

ciated with transonic flow through oscillating cas-
cades. Since exact solutions are not available,

computational techniques arc uscd and introduce

approximations to the solutions. These approxima-

tions commonly use eddy viscosity methods fi)r turbu-

lence modcling, numerical dissipation terms for

stability and coarse grids for practical computing.

Further complications arise when unsteady flow exists

and proper treatment of the boundary conditions are
essential. The message here is that numerical solu-

tions of the more complex flow equations, like the

Navier-Stokcs equations, do not automatically give
accurate results. Much research is needed in this

area to develop proper modeling of the physical flow
field.

The present research fi_cuses on numerical

solutions of the Euler and Navier-Stokes equations to
modcl two-dimensional flow through oscillating cas-

cades. The model prescribes harmonic pitching
motions for the blade sections for both zero and

non-zero intcr-blade phase angles. The deforming
grid technique introduced in reference 1 is utilized

fl)r convenient specification of the periodic boundary

conditions. Several sample predictions are compared

to experimental data. Also, an investigation of

reflecting versus non-reflecting boundary conditions

is presented to determine their effect on the unsteady

blade loading.

Governing Equations

A major portion of the present code is based on

the unsteady, viscous solver deveiopcd by Sankar and

Tang (ref. 2) for flow past isolated airh)ils. This code

solves the two-dimensional, unsteady, Reynolds-

avcragcd, comprcssible Navier-Stokcs equations on a

body-fitted moving coordinate system in strong

conscrwdion form using an ADI procedure. These

equations can be written as:

(i)



whcrc

Q = j-i{p, p_, pv. _}, (2)

and p is the fluid density; u and v are the Cartesian

components of the fluid velocity; e is the total energy

per unit volume. The body-fitted (_,, q. -_) coordinate

system is related to the Cartesian coordinates using

the following transformation:

_=_(x.y.t)

rl= q(x.y,t)

T=t

(3)

The Jacobian of the transformation is given by:

1
J = _11y- q.Ey .................

.'v_y. - .\.y_
(.I-)

and the metrics of the transformation are given by:

_y=-dx.: qy= .lx_ (s)

Standard central differences wcrc used to compute

xt. yt. x,,, 7,, which were then used 1o calculate lhc
metrics.

The ,e and C: terms in equation (1) arc the inviscid

terms in the _ and q-directions, respectively. The

viscous terms,/_ and .9, are treated explicitly and can

be omitted to give solutions for the Eulcr equations.

The Beam-Warming, block ADI algorithm is used to

solve the governing equations. Artificial dissipation is

added to help the stability. The solution is second-

order accurate in space and first or second-ordcr

accurate in time. The Baldwin-Lomax, two-layer

algebraic model (ref. 3) is used to evaluate the eddy

viscosity. The Johnson-King (ref. 4) and (;orski (rcf.

5) k - e turbulence models have bcen coded by Wu

(ref. 6), but no comparisons are includcd in this

study. Further information about the algorithm for
isolated airfoils can be found in reference 2.

fir_hi

An unique feature of the present code is the

treatment of the grid for oscillating cascades. A

method for deforming the grid was devch)ped in ref-

erence 1 for zero inter-blade phase angles. The

present study is an extension of this method to modcl

non-zero inter-blade phase angles.

The code uses a C-grid generated from Sorenson's

(rcf. 7) GRAPE code, which was modified by Chima

(rcf. 8) for improved modcling in turbomachincry

problems. One C-grid is generated for cach blade in

the cascade. The outer boundary of the C-grid is
dcfincd by the user in the GRAPE code. A deform-

ing grid technique (rcf. 1) is used to locate the posi-

tion of the grid as a function of time. The inner

boundary moves with the prescribed blade motion,

while the outer boundary remains fixed in space. The

grid lines connecting the inner and outer boundaries
arc allowed to deform. The amount of deformation

is a function of the distance away from the surface of

the airfoil. A weighting function, w, is defined as:

s(_,.n) iI (6)

where s = the arclength of a grid line from the airfoil

surface (rl= 1) to some grid point along _ = constant,

and q ..... = the outer boundary grid line. The grid
deformation is defined as:

(7)

where A x ;j and A y ;j are the spatial diffcrences

between successive time steps if the entire grid was

moved as a rigid body. From equations (6) and (7),
we see that nodes at the inner boundary (s=0) gives

tv u = 1, which means the airfoil surface follows the
rigid body motion of the blade. Conversely, the outer

boundary nodes give w,s = 0 and the node positions

remain fixed at the initial specified locations. The

interior nodes shear in space relative to the initial

grid as w,j varies between 0 and 1. The node veloci-

ties can be easily found by dividing the grid deforma-

lion by the time step value.

Multiple blade computations arc made possible by

stacking the C-grids for each blade and passing infor-

mation between the upper and lower boundarics.



EachC-gridisexpandedbyonegridlinein the

q-direction at the outer boundary to provide glmsl

points for the interior grid of the adjacent bladcs.

This allows the periodic boundary condition to be

treated implicitly. The case for zero inter-blade

phase angle is the simplest for grid generation. Peri-

odic boundary conditions are applied across the

upper and lower boundaries thereby requiring a grid

for only one blade. However, non-zero inter-blade

phase angles require multiple blade computations for

exact treatment of the periodic boundary conditions.

For example; an inter-blade phase angle (o) of:q80

dcgrecs rcquircs two blades, o = :_) degrees

requires four blades, etc. This significantly increases

the computational time for non-zero inter-blade

phase angles, but provides an exact boundary condi-

tion. This method may be useful as a tool for evalu-

ating simplified periodic boundary conditions that do

not use as many bladcs for non-zero inter-blade

phase angles.

Thc deforming grid technique is demonstrated in
Figure 1 for a multiple blade computation. The

figure shows two extremely simplified grids superim-

posed at two different times. Multiple grids are

generated for a NACA 16-004 cascade with twenty

degrees of stagger. This geometry is representative

of a geometry that might be used in the advanced

turboprop. The inter-blade phase angle is 90 degrees

and requires four blades to specify the periodic

boundary conditions. (Only three blades are shown

in this figure for clarity.) The amount of oscillation is

exaggerated to illustrate the deforming grid tech-

nique. Notice how the outer boundary of the grid

around one blade remains fixed in space, while the

inner boundary follows the motion of the airfoil. An

actual calculation for an oscillating cascade typically

has a pitching amplitude of only a few degrees and
does not distort the grid as much as shown in Figure

1. Larger pitching amplitudes are possible, however,

by rcgriding at different time periods and using the

deforming grid technique for various time intervals of

the pitching motion.

Boundary_ Conditions

The proper treatment of boundary conditions is

important for any numerical computation and espe-

cially for unsteady flows. The present solution solves
for the flow around each blade indepcndently and

uses periodic boundary conditions along the upper

and lower boundaries to model the cascade effects.

(;host points arc assigned at the first intcrior grid linc

(11= I1.... - I) and are used implicitly by the adjacent

grid from the next blade. Although it is tempting to
use the most current flow information as it becomes

available from the integration scheme, it is important
to only use flow information from the same time

period across the periodic boundaries. This elimi-

nates time inaccuracy due to the direction of time

marching from blade to blade. The metric data is

also forced to be continuous along the periodic

boundaries. This procedure essentially makes the
pcriodic boundarics invisible to the flow solution and

means the only specification of boundary conditions
are at the inlet and exit planes, blade surfaces and the
slits aft of the airfoils.

The inlet conditions are assumed to be uniform

with a reference density, velocity and inlet flow angle.
In previous solutions (ref. 1), the static pressure was

also specificd from the steady-state solution of a sta-

tionary cascade. This provided enough infl_rmalion

to dctcrmine the unsteady solution for an oscillating
cascade, but also introduces a reflective boundary

condition. This problem has been addressed by

transforming the fluid equations into characteristic

form at the inlet boundary and prescribing the flow

information as incoming or outgoing waves. This

approach was formulated by Hedstrom (ref. 9) for

one-dimensional gas dynamic equations, and

extended to two-dimensional problems by Thompson

(ref. 10). While the two-dimensional method does

not give a perfectly transmitting boundary condition,

it does offer a method for minimizing reflections by

considering waves oblique to the grid boundary. A

brief explanation of this method is given below.

The two-dimensional fluid equations from equa-

tion (1) can be generalized in the following form if we

neglect viscous terms:

a_ a,e. a_
---+ .... +--+c +C =o (8)
at a_ aq

Define the following relations:

aO au a, e au

a--7 = P -_7. a--(-- Q _--{-,

a_ au
--= R A= p.iQ B= P-tR
a q _ql' ' '



c_= e"cl.c.= p 'c_ (9)

Substituting into equation (8) and multipying by P- r

gives."

aU aU aU
--+A +B + C_=O (I0)

The A and B matrices can be defined as:

A= S-IAS,B = T-lilT (1 l )

where A and H are diagonal matrices which define
the characteristic velocities. Hence, the characteristic

form of equation (8) can be written as:

OU aU aU
--+ S-'AS + T"et "r

+C_+ C_ = 0 (12)

A portion of the rlm,x grid line is defined to be the

inlet to the cascade. This requires equation (8) to be

written in characteristic form only in the rtdirection:

at3 a/r
--+ --+ct
at a_

BU Cn) = 0+ P( T-IHT-_q + (13)

Consider the terms in the parentheses containing the

information in the q-direction. Define:

OU ) OUT-'rlTTn+C" = -a-T_. (14)

Multiply equation (14) by T:

BU BU+
T--+atn HT_I 7C.=0

(it_)

The boundary conditions at the inlet boundary can be

written in a form similar to equation (15):

au

m*at--+,l l-l, +rntC.=O, (16)

where

Ix,m -- for outgoinq waveq
ll, = aq

for lncolll tlly waves

ttere, ra_ are the left eigenvectors of B, lt_ are the
dU.

eigenvalues of B, and _ Is evaluated using one-sided

differencing. The problem now becomes solving for
,_l/ t" , dO

computing 77 equa-7T_lrom equation (16) and from

tion (13):

aO aF ad
--+--+ci=P (17)
at e_

The boundary conditions applied at the inlet for sub-

sonic inflow specify density, velocity and flow angle

and solve equation (17) to determine the energy.

For viscous flows, the exit boundary conditions

extrapolate density and velocity from the interior and

specify static pressure to calculate energy. The char-

acteristic equations are not valid across the viscous
wake due to the non-isentropic flow at the exit

boundary. This introduces reflective boundary condi-

tions at the exit. It is not clear how to apply a

non-reflective boundary condition in this region. For

inviscid flows, the characteristic equations are used by

specifying static pressure at the exit and solving an

equation similar to equation (17) for density and the

two components of velocity.

Solid wall boundary conditions are applied along

the airfoil surface and the flow variables are averaged
across the slit aft of the airfoil.

Results and Discussion

NACA 65-Series Cascade

Sample predictions were presented in reference 1

to validate the use of a deforming grid for an isolated

airfoil. The present study investigates a NACA 65-se-

ries cascade with subsonic inflow to help validate the

solver for both zero and non-zero inter-blade phase

angles. The predictions presented for this cascade
are obtained from the solution of the full Navier-

Stokes equations and therefore include viscous losses.

The experimental data was obtained by Carta (ref.

11) and has been used by other researchers for code



validation.Thiscascadehasbeencalled"TheFirst
StandardConfiguration"bytheSecondInternational
SymposiumonAeroelasticityinTurbomachines(ref.
12).Figure2showsthecascadegcometrynomencla-
tureusedinthepresentinvestigation.

Thecascadegeometryconsistsof NACA65-series
thicknessdistributionsona10degreecircular-arc
camberline,55degreestaggerangle(¥),agap-to-
chordratio(g/c)of0.75andathickness-to-chord
ratio(T") of 0.06. An arbitrary test casc from the

First Standard Configuration has been chosen for

comparison with the present solver. The inlet Mach

numbcr (M 1) is 0.17 and the airfoils arc pitching

about the midchord with an amplitude (a) of 2.0

degrees and a reduced frequency (k) of 0.123 based

on scmi-chord. Two inter-blade phase angles (co of 0

and 90 degrees are investigated in this study for com-

parisons with experimental data.

The grid used in the solution for this cascade is

shown in Figure 3. The GRAPE code is used to

generate a grid about the mean pitching angle. The
solver is used to determine the mean flow solution.

An iterative process is necessary by the user to verify

that the specified exit pressure gives the desired

velocity specified at the inlet. (Losses through the

cascade prevent an exact analytical specification of

these properties.) Four blades arc required for o= 90

degrees, although only two are shown in Figure 3a.
Multi-blade solutions for oscillating cascades are

done by generating grids for each blade and using the
mean flow solution as an initial condition to the

unsteady solutions. The solver automatically gener-

ates these grids before the unsteady solution begins

by deforming the mean flow grid for one blade

through one cycle of oscillation and saving the grids

that occur at multiples of the desired inter-blade

phase angle. For example, when o= 90 degrees, four
grids need to be assembled with a blade-to-blade

phase angle of 90 degrees. The grid from the mean

flow solution is used for the first blade (ctI=0). The

grids for the remaining three blades are found by

deforming the mean flow grid through one cycle of
oscillation and storing the grid coordinates when

c_t =90, 180, and 270 degrees. The solver numbers

the blades and essentially stacks the grids to give one

global grid containing four blades. The global grid is

then used as the initial grid for the unsteady solution,

where it is deformed for the oscillating cascade using
the method described in the "Grid" section. Since the

dynamic memory is usually limiting for multi-clement

grids, the solid-state storage device on the CRAY-
XMP at NASA Lewis Research Center is used to

store all grids and flow information. The C-grid and
flow variables for one blade are transferred into

dynamic memory on the CRAY as needed by the
solver.

Figure 3b shows more detail of the grid near the

airfoil surface. The distance of the first grid line off

the airfoil surface is 0.00005 chord lengths, which is

appropriate for modeling the boundary layer. The
grid around one airfoil is 157 x 40 in the _ and

Itdirections, respectively. The grid is clustered about

the leading edge and the boundary layer region.

Also, the grid near the inlet is clustered in the _/-di-
rection to resolve waves near the inlet.

A steady-state solution was done first for the

NACA 65-series cascade for the mean flow condi-

tions. This required adjusting the exit pressure until
the inlet Mach number was near 0.17. As mentioned

by Verdon (ref. 13), there is some ambiguity concern-

ing the inlet flow angle. The experimental flow angle
was 131=66.0 degrees. Verdon found that 13_=62.2

degrees gave better agreement with the experimental

mean flow pressure distributions. A study of mean
flow pressure distributions for various inlet flow

angles is presented in Figure 4 using the present
solver. An inflow angle of 64 degrees was found to

give the best comparison with the experimental data.

Each solution required 2000 time steps to reach a

steady-state and used about 400 seconds of CRAY-
XMP CPU time.

Two unsteady solutions for inter-blade phase

angles of 0 and 90 degrees were done using the mean
flow solution as an initial condition. Both solutions

were run with first-order temporal accuracy. The
surface pressure time histories were recorded and

found to reach a reasonably periodic solution after

two cycles of cascade oscillation. A Fourier trans-

form was done on the second cycle to determine the

first harmonic magnitude and phase of the pressure

distribution relative to the airfoil motion. Higher

harmonics of the surface pressure distributions were

found to be small compared to the fundamental fre-

quency. The pressures are normalized by the airfoil

pitching amplitude and the phase is referenced to the

airfoil pitching angle starting at the maximum (nose

up) blade angle. The predictions for o= 90 and 0

degrees are shown in Figure 5 along with the exper-

imental data. Both the magnitude and phase are well
predicted for both the upper and lower surfaces.



Thephaseangles for o= 0 degrees differ quantita-
tively on the upper surface toward the trailing edge,

although the overall trend is predicted. The reason

for this is probably due to the pressure magnitudes in

this region being dose to zero. The unsteady calcula-

tions of phase are more senskive when the output of

the real and imaginary parts of pressure from the

Fourier transform go towards zero. The unsteady
solutions use 3.26 x 1O-5seconds of CPU per time

step per grid point per blade and required 16053 time

steps to complete 2.25 cycles of oscillation.

Elat.P3alr,_a_a_

A cascade of flat plates was used in the present

analysis for comparisons with the unsteady, small-

perturbation, subsonic analysis in reference 16. The
cascade was arranged with y=53 degrees and

g/c = 0.767, which corresponds to the conditions used

in the biconvex airfoil cascade to be presented in the

next section. All runs for the remaining solutions are

inviscid so that the non-reflecting boundary condi-

tions are valid at both the inlet and exit planes to the

cascade. This also allows comparisons between runs

using reflecting and non-reflecting boundary condi-
tions.

The first set of flow conditions consider M 1=0.65,

13z=53.0, k=0.221, and et=0.10 degrees. This gives a

zero mean incidence angle on the flat plates and a

small amplitude of oscillation to allow for compari-

sons with the small-perturbation, subsonic flat plate

analysis of Smith (ref. 16). A 199 x 33 grid was used

around a flat plate with t = 0.005. The leading and

trailing edges were rounded to aid the C-grid genera-

tion, and therefore this is only an approximate repre-

sentation of a flat plate. Figure 6 shows the

comparisons for o= -90, 90, and 0 with the

small-perturbation theory. (Notice that the pressure

coefficient is now normalized by p tV _instead of

1 2

[p j V _ to be consistent with the normalization used

by Smith in reference 16). Also shown in Figure 6

are comparisons from the present analysis for reflec-

tive versus non-reflective boundary conditions. The

"reflective boundary conditions" means the inlet and

exit planes specify the information from the mean

flow solution. The "non-reflective boundary condi-
tions" use the characteristic method described earlier

to help minimize reflections from the inlet and exit.

For o=-90 and or=90, the agreement is very good

for all cases and the type of boundary conditions had

little effect on the results. When o= 0, the agreement
with small-perturbation theory became worse and the

type of boundary conditions used at the inlet and exit

gave different the results within the code. In particu-

lar, the magnitude distribution dropped to values

closer to the theory when using the non-reflective

boundary conditions, but the phase values became

worse. The reason for this is unknown, although this

condition is very close to resonance, as calculated by

Verdon (ref. 13). Acoustic resonance occurs in cas-

cades when a wave propagates from an airfoil in the
direction of the stagger line and intersects an

adjacent blade in the same amount of time associated

with the inter-blade phase angle. Numerical solu-
tions are expected to be difficult when operating near
an acoustic resonance condition.

Solutions were also done for oscillating flat plates

with M j=0.80 and k=0.185 and are compared to the

small-perturbation theory. The results are presented

in Figure 7 and show the same trends reported for

Figure 6. The non-zero inter-blade phase angle solu-

tions are in good agreement with the small-

perturbation theory. The near-resonant condition,

o=0, shows poorer agreement with the theory. In

general, the non-reflecting boundary conditions show

good agreement in the magnitudes of the unsteady

pressures when compared to the theory, but differ in

the phase distributions. On the other hand, the cases

using reflective boundary conditions show worse

agreement in magnitude predictions and better

agreement in phase distributions.

NASA Lewis Cascade

Another cascade geometry for which experimental

data (including unsteady surface pressure distrib-

utions) exists is the NASA Lewis Transonic Oscillat-

ing Cascade (ref.14 and ref. 15). This cascade

consists of symmetric biconvex airfoils (r "= 0.076)
arranged with y=53 degrees and g/c=0.767. Both
subsonic and transonic test cases have been chosen

from the experimental data for comparisons with pre-

dictions from the present solver. Again, all runs for
the remaining solutions are inviscid so that a

boundary condition study can be performed.

The subsonic test cases consider M _= 0.65 and the

mean 13t= 60.0 degrees (i= 7 degrees). The grid gen-

eration is similar to the technique described for the
NACA 65-series cascade. The distance of the first



gridlineofftheairfoilsurfaceis0.01chordlengths.
Thegridaroundoneairfoilis199x22inthe_,and
q-directions,respcctively.Unsteadysolutionswere
doneforanoscillatingcascadewiththebiconvex
airfoils,ct=1.2dcgrecs,k=0.221,ando=-90,90 and 0

and are shown in Figures 8,9,and 10, respectivcly. A

Fourier transform was done on the third cycle to

determine the first harmonic unsteady pressure dis-

tributions. For completeness, both the CP and L'_CP

predictions are prcsented for real and imaginary

parts, and magnitude and phase components. The
cascs for 0=-90 (Figure 8) and o=_1 (Figure 9) arc in

good ovcraU agreement with the experimental data of

refercnce 15. When o=0 (Figure 10), therc is a shift

in the real part (in-phase part) of thc unsteady prcs-

sure on both the upper and lower surfaces relative to

the experimental data. Again, operating near an

acoustic resonant condition may contributc to these

discrepcncies. It is interesting to note that while the

upper and lower unsteady surface pressures arc in

poor agreement with the data, the A C P representa-
tion of the same predictions look better. This illus-

trates the importance of presenting separate pressure

distributions for the upper and lower surfaces when
possible.

An investigation of the numerical time accuracy is

done for the same test cases presented above. The
code can be run with either first-ordcr or second-

order accuracy in time. Figure 11 compares the real

and imaginary parts of pressure fl_r o- -90, 90, and 0,

and shows that there arc only minor differences

between the predictions for first and second-order

temporal accuracy.
The transonic test cases are identical to the

subsonic test cases, except M _= 0.80. The increase in

the inlet velocity causes a shock to form on the upper

surface near the leading edge. Figure 12 shows the

mean flow pressure distributions for two conditions:

1.) matching the experimental inlet Mach number

(0.80) and 2.) matching the experimental ratio of the

exit static pressure to the inlet total pressure (0.7248).

The desired flow conditions probably lie somewhere

between these predictions, as shown by thc compari-

son with experimental data. In both cases, the

pressure distributions are in good agreement with

each other and the experimental data and thcrefore
eithcr condition could be used for the mean flow in

the unsteady analysis. The unsteady solutions (that

follow) match the inlet flow velocity from the exper-
imental data.

The unsteady pressure distributions for k = 0.185,

<J=-90,90, and 0 degrees are shown in Figures 13, 14,

and 15, respcctivcly. The change in the reduccd

frequency maintains the same oscillation frequency

used in the subsonic cases ( or= 200 Hz). The agree-

ment with experimental data are very good for the

o= -90 degrees case (Figure 13). The shock on the

upper surface is modeled by the analysis, as evident

by the pressure peaks near the leading edge. Note

that the experiment did not have pressure transducers

near this region and is not expected to capture this
behavior. The agreement with the data becomes

progressively worse for 0=90 (Figure 14) and _=0
(Figure 15). The real-part of pressure on the forward

portion of the upper surface differs from the data for

_:90. This was also observed by Verdon (ref. 13)

using a linearized potential code. Both the real and

imaginary parts of pressure differ from experiment

fi)r c_=0. Again, this case is near an acoustic reso-

nance condition. Also, the real and imaginary parts

of pressure arc significantly smaller than other cases,
which makes the calculations for phase sensitive to
their valucs.

A study was done to determine the effect of

boundary conditions on the first harmonic pressure

distributions. Each of the three cases reported above
were run with four combinations of inlet and exit

boundary condition types: 1.) reflecting inlet and exit,

2.) "non-reflecting" inlet and exit, 3.) reflecting inlet,

"non-reflecting" exit, and 4.) "non-reflecting" inlct,

reflecting exit. The results are presented in Figure 16

and show that the type of boundary conditions can

make a significant difference on the first harmonic

unsteady pressure distributions. For clarity, the indi-

vidual cases are labeled only when there are noticable

differences in the pressure distributions. The type of

boundary condition used has the little effect when

o: -90 degrees. However, when o= 90 degrees, the

inlet boundary condition has a significant effect, par-

ticularly near the leading edge shock. The zero inter-

blade phasc angle case, which is near an acoustic

resonance condition, shows a different solution for

each type of boundary condition. This is not to say
that these observations will hold true for other flow

conditions. Much work has been done by other

rcsearchers to predict when acoustic waves will prop-

agate from an oscillating blade row. They have

shown that different geometries and flow conditions

will change the propagation characteristics. While a

full study of wave propagation is beyond the scope of



thiswork,thepresentstudydoesshowthatpropcr
treatmentoftheinletandexitboundaryconditionsis
neccessaryformodelingthefirstharmonicunsteady
pressuredistributionsin transonicflows.Overall, the

results from the boundary condition studics show that

the type of inlet boundary conditions have a greater

effect on the unsteady pressure distributions than the

type of exit boundary conditions. This is encouraging

for validating the viscous solutions that cannot use

the non-reflective boundary conditions at the exit.

However, this conclusion is not substantiated without

a further study on the effects of inlet and exit distance

from the blade surface. All of the present cases have

an inlet boundary closer to the blade than the exit

boundary. Therefore, the downstrcam-running waves

have a longer distance for attenuation than the

upstream-running waves.

The inviscid runs require about 2.3_3v 10 _

seconds of CPU per time step per grid point pcr

blade. Thc number of time steps required for one

cycle of oscillation is a function of k,M _,and/\ t. The

cases with k=0.185, M 1=0.80 and A a:=0.01 require

2835 seconds of CPU for 6899 iterations, which cor-

responds to 3.25 cycles of oscillation of four bladcs.

It is possible to reduce this run time by performing a

grid and time step size study.

Conclusions

A compressible, Euler or full Navicr-Stokes, finite

difference code has been developed for modeling

inviscid and viscous flow through oscillating cascades.

The code uses a deforming grid tcchnique to capture

the motion of the airfoils and can model oscillating
cascades with both zero and non-zero intcr-blade

phase angles. Two-dimensional, unsteady character-

istic boundary conditions are applied at the inlet for
viscous solutions and to both the inlet and exit for

inviscid solutions to minimize wave rcflections from

these regions. Results show that predictions for a low

speed, NACA 65-series oscillating cascadc are in

good agreement with experimental data. The predic-
tions for an oscillating cascade of fiat platcs are in

good agreement with small-perturbation theory for

non-zero inter-blade phase angles. The zcro degree

inter-blade phase angle eases, which were near an

acoustic resonant condition, differ from the theory.

The predictions for an oscillating cascade of biconvex

airfoils are in fair agreement with experimental data

for non-zero inter-blade phase angles. Solutions for

zero degree inter-blade phase angles only show quali-

tative agreement with the data. Studies on reflecting

vcrsus non-reflecting inlet and exit boundary

conditions show that the treatment of the boundary

can have a significant effect on the first harmonic,

unsteady pressure distributions for the cases with

zero inter-blade phase angles. Using first or second-

order temporal accuracy in the numerical algorithm

did not make a significant difference in the unsteady
pressure distributions for the present solutions.
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16 Abslracl

The design of turbomachinery blades requires the prevention of lluttcr ti)r all operating conditions. However,

flow field predictions used for aeroelastic analysis are not well understood for all flow regimes. The present

research focuses on numerical solutions of the Euler and Navier-Stokes equations using an ADI procedure to

model two-dimensional, transonic flow through oscillating cascades. The model prescribes harmonic pitching

motions lor the blade sections for both zero and nonzero interblade phase angles. The code introduces the use of

a deforming grid technique for convenient spccilication of Ihe periodic boundary conditions. Approximate

nonreflccting boundary conditions have bccn c_dcd Ior the inlet and exit boundary conditions. Sample unsteady

solutions have been performed for an oscillating cascade and compared to experimental data. Also, test cases

were run for a flat plate cascade to compare with the unsteady, small-perturbation, subsonic analysis. The

predictions for oscillating cascades with nonzero interblade phase angles are in good agreement with experimental

data ar, d small-perturbation theory. The zero degree interblade phase angle cases, which were near a resonant

condition, differ from the experiment and theory. The zero degree interbladc phase angle cases, which were near

a resonant condition, differ from the experiment and theory. Studies on reflecting versus nonreflecting inlet and

exit boundary conditions show that the treatment of the boundary can have a significant effect on the first

harmonic, unsteady pressure distributions lot certain flow conditions. This code is expected to be used as a tool

for reviewing simpler models that do not include the full nonlinear aerodynamics or as a final check lot designs

against flutter in turbomachincry.
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